Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Med Virol ; 95(3): e28655, 2023 03.
Article in English | MEDLINE | ID: covidwho-2260026

ABSTRACT

As the key component of host innate antiviral immunity, type I interferons (IFN-Is) exert multiple antiviral effects by inducing hundreds of IFN-stimulated genes. However, the precise mechanism involved in host sensing of IFN-I signaling priming is particularly complex and remains incompletely resolved. This research identified F-box protein 11 (FBXO11), a component of the E3-ubiquitin ligase SKP/Cullin/F-box complex, acted as an important regulator of IFN-I signaling priming and antiviral process against several RNA/DNA viruses. FBXO11 functioned as an essential enhancer of IFN-I signaling by promoting the phosphorylation of TBK1 and IRF3. Mechanistically, FBXO11 facilitated the assembly of TRAF3-TBK1-IRF3 complex by mediating the K63 ubiquitination of TRAF3 in a NEDD8-dependent manner to amplify the activation of IFN-I signaling. Consistently, the NEDD8-activating enzyme inhibitor MLN4921 could act as a blocker for FBXO11-TRAF3-IFN-I axis of signaling. More significantly, examination of clinical samples of chronic hepatitis B virus (HBV) infection and public transcriptome database of severe acute respiratory syndrome coronavirus-2-, HBV-, and hepatitis C virus-infected human samples revealed that FBXO11 expression was positively correlated with the stage of disease course. Taken together, these findings suggest that FBXO11 is an amplifier of antiviral immune responses and might serve as a potential therapeutic target for a number of different viral diseases.


Subject(s)
COVID-19 , F-Box Proteins , Hepatitis B, Chronic , Interferon Type I , Humans , Antiviral Agents/pharmacology , Protein Serine-Threonine Kinases/genetics , TNF Receptor-Associated Factor 3/genetics , Immunity, Innate , Interferon Type I/metabolism , Interferon Regulatory Factor-3/genetics , Protein-Arginine N-Methyltransferases/metabolism
2.
J Virol ; 97(2): e0175122, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2237611

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) belongs to the genus Alphacoronavirus of the Coronaviridae family and can cause fatal watery diarrhea in piglets, causing significant economic losses. Heterogeneous nuclear protein U (HNRNPU) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. However, it remains elusive whether and how cytoplasmic PEDV can be sensed by the RNA sensor HNRNPU. In this study we determined that HNRNPU was the binding partner of Nsp13 by immunoprecipitation-liquid chromatography-tandem mass spectrometry (IP/LC-MS/MS) analysis. The interaction between Nsp13 and HNRNPU was demonstrated by using coimmunoprecipitation and confocal immunofluorescence. Next, we identified that HNRNPU expression is significantly increased during PEDV infection, whereas the transcription factor hepatocyte nuclear factor 1α (HNF1A) could negatively regulate HNRNPU expression. HNRNPU was retained in the cytoplasm by interaction with PEDV Nsp13. We found that HNRNPU overexpression effectively facilitated PEDV replication, while knockdown of HNRNPU impaired viral replication, suggesting a promoting function of HNRNPU to PEDV infection. Additionally, HNRNPU was found to promote PEDV replication by affecting TRAF3 degradation at the transcriptional level to inhibit PEDV-induced beta interferon (IFN-ß) production. Mechanistically, HNRNPU downregulates TRAF3 mRNA levels via the METTL3-METTL14/YTHDF2 axis and regulates immune responses through YTHDF2-dependent mRNA decay. Together, our findings reveal that HNRNPU serves as a negative regulator of innate immunity by degrading TRAF3 mRNA in a YTHDF2-dependent manner and consequently facilitating PEDV propagation. Our findings provide new insights into the immune escape of PEDV. IMPORTANCE PEDV, a highly infectious enteric coronavirus, has spread rapidly worldwide and caused severe economic losses. During virus infection, the host regulates innate immunity to inhibit virus infection. However, PEDV has evolved a variety of different strategies to suppress host IFN-mediated antiviral responses. Here, we identified that HNRNPU interacted with viral protein Nsp13. HNRNPU protein expression was upregulated, and the transcription factor HNF1A could negatively regulate HNRNPU expression during PEDV infection. HNRNPU also downregulated TRAF3 mRNA through the METTL3-METTL14/YTHDF2 axis to inhibit the production of IFN-ß and downstream antiviral genes in PEDV-infected cells, thereby promoting viral replication. Our findings reveal a new mechanism with which PEDV suppresses the host antiviral response.


Subject(s)
Coronavirus Infections , Nuclear Proteins , Porcine epidemic diarrhea virus , Swine Diseases , Virus Replication , Animals , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/virology , Nuclear Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , RNA, Messenger/metabolism , Swine , Swine Diseases/immunology , Swine Diseases/virology , TNF Receptor-Associated Factor 3/metabolism , Transcription Factors/metabolism , Virus Replication/physiology
3.
Vet Microbiol ; 273: 109544, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2028561

ABSTRACT

Autophagy-related 4B (ATG4B) is found to exert a vital function in viral replication, although the mechanism through which ATG4B activates type-I IFN signaling to hinder viral replication remains to be explained, so far. The current work revealed that ATG4B was downregulated in porcine epidemic diarrhea virus (PEDV)-infected LLC-PK1 cells. In addition, ATG4B overexpression inhibited PEDV replication in both Vero cells and LLC-PK1 cells. On the contrary, ATG4B knockdown facilitated PEDV replication. Moreover, ATG4B was observed to hinder PEDV replication by activating type-I IFN signaling. Further detailed analysis revealed that the ATG4B protein targeted and upregulated the TRAF3 protein to induce IFN expression via the TRAF3-pTBK1-pIRF3 pathway. The above data revealed a novel mechanism underlying the ATG4B-mediated viral restriction, thereby providing novel possibilities for preventing and controlling PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Chlorocebus aethiops , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/genetics , Signal Transduction , Swine , TNF Receptor-Associated Factor 3/genetics , Vero Cells , Virus Replication
4.
J Virol ; 96(13): e0061822, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1962091

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.


Subject(s)
Coronavirus Infections , Interferon Type I , Nucleocapsid Proteins , Porcine epidemic diarrhea virus , Transcription Factors , Animals , Antiviral Agents , Cell Line , Chlorocebus aethiops , Coronavirus Infections/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , TNF Receptor-Associated Factor 3 , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Vero Cells
5.
J Virol ; 96(10): e0007022, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1832352

ABSTRACT

In global infection and serious morbidity and mortality, porcine epidemic diarrhea virus (PEDV) has been regarded as a dreadful porcine pathogen, but the existing commercial vaccines are not enough to fully protect against the epidemic strains. Therefore, it is of great necessity to feature the PEDV-host interaction and develop efficient countermeasures against viral infection. As an RNA/DNA protein, the trans-active response DNA binding protein (TARDBP) plays a variety of functions in generating and processing RNA, including transcription, splicing, transport, and mRNA stability, which have been reported to regulate viral replication. The current work aimed to detect whether and how TARDBP influences PEDV replication. Our data demonstrated that PEDV replication was significantly suppressed by TARDBP, regulated by KLF16, which targeted its promoter. We observed that through the proteasomal and autophagic degradation pathway, TARDBP inhibited PEDV replication via the binding as well as degradation of PEDV-encoded nucleocapsid (N) protein. Moreover, we found that TARDBP promoted autophagic degradation of N protein via interacting with MARCHF8, an E3 ubiquitin ligase, as well as NDP52, a cargo receptor. We also showed that TARDBP promoted host antiviral innate immune response by inducing interferon (IFN) expression through the MyD88-TRAF3-IRF3 pathway during PEDV infection. In conclusion, these data revealed a new antiviral role of TARDBP, effectively suppressing PEDV replication through degrading virus N protein via the proteasomal and autophagic degradation pathway and activating type I IFN signaling via upregulating the expression of MyD88. IMPORTANCE PEDV refers to the highly contagious enteric coronavirus that has quickly spread globally and generated substantial financial damage to the global swine industry. During virus infection, the host regulates the innate immunity and autophagy process to inhibit virus infection. However, the virus has evolved plenty of strategies with the purpose of limiting IFN-I production and autophagy processes. Here, we identified that TARDBP expression was downregulated via the transcription factor KLF16 during PEDV infection. TARDBP could inhibit PEDV replication through the combination as well as degradation of PEDV-encoded nucleocapsid (N) protein via proteasomal and autophagic degradation pathways and promoted host antiviral innate immune response by inducing IFN expression through the MyD88-TRAF3-IRF3 pathway. In sum, our data identify a novel antiviral function of TARDBP and provide a better grasp of the innate immune response and protein degradation pathway against PEDV infection.


Subject(s)
Coronavirus Infections , DNA-Binding Proteins , Interferon Type I , Porcine epidemic diarrhea virus , Virus Replication , Animals , Coronavirus Infections/veterinary , DNA-Binding Proteins/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Myeloid Differentiation Factor 88/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/physiology , RNA/metabolism , Signal Transduction , Swine , TNF Receptor-Associated Factor 3/metabolism
6.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1831591

ABSTRACT

Infection with the porcine epidemic diarrhoea virus (PEDV) causes severe enteric disease in suckling piglets, causing massive economic losses in the swine industry worldwide. Tripartite motif-containing 56 (TRIM56) has been shown to augment type I IFN response, but whether it affects PEDV replication remains uncharacterized. Here we investigated the role of TRIM56 in Marc-145 cells during PEDV infection. We found that TRIM56 expression was upregulated in cells infected with PEDV. Overexpression of TRIM56 effectively reduced PEDV replication, while knockdown of TRIM56 resulted in increased viral replication. TRIM56 overexpression significantly increased the phosphorylation of IRF3 and NF-κB P65, and enhanced the IFN-ß antiviral response, while silencing TRIM56 did not affect IRF3 activation. TRIM56 overexpression increased the protein level of TRAF3, the component of the TLR3 pathway, thereby significantly activating downstream IRF3 and NF-κB signalling. We demonstrated that TRIM56 overexpression inhibited PEDV replication and upregulated expression of IFN-ß, IFN-stimulated genes (ISGs) and chemokines in a dose-dependent manner. Moreover, truncations of the RING domain, N-terminal domain or C-terminal portion on TRIM56 were unable to induce IFN-ß expression and failed to restrict PEDV replication. Together, our results suggested that TRIM56 was upregulated in Marc-145 cells in response to PEDV infection. Overexpression of TRIM56 inhibited PEDV replication by positively regulating the TLR3-mediated antiviral signalling pathway. These findings provide evidence that TRIM56 plays a positive role in the innate immune response during PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Antiviral Agents , Interferon-beta/genetics , Interferon-beta/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Swine , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Virus Replication
7.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1122600

ABSTRACT

The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.


Subject(s)
Host-Pathogen Interactions/genetics , Machine Learning , Protein Interaction Mapping/methods , Receptors, Virus/metabolism , Viral Proteins/metabolism , Viruses/metabolism , Amino Acid Sequence , Antiviral Agents/therapeutic use , CD40 Antigens/genetics , CD40 Antigens/metabolism , Computational Biology/methods , Databases, Genetic , Gene Expression , Humans , Protein Binding , Receptors, Virus/genetics , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Viral Proteins/genetics , Virus Diseases/drug therapy , Virus Diseases/virology , Viruses/drug effects , Viruses/genetics
8.
Front Immunol ; 12: 662989, 2021.
Article in English | MEDLINE | ID: covidwho-1256380

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of current COVID-19 pandemic, and insufficient production of type I interferon (IFN-I) is associated with the severe forms of the disease. Membrane (M) protein of SARS-CoV-2 has been reported to suppress host IFN-I production, but the underlying mechanism is not completely understood. In this study, SARS-CoV-2 M protein was confirmed to suppress the expression of IFNß and interferon-stimulated genes induced by RIG-I, MDA5, IKKϵ, and TBK1, and to inhibit IRF3 phosphorylation and dimerization caused by TBK1. SARS-CoV-2 M could interact with MDA5, TRAF3, IKKϵ, and TBK1, and induce TBK1 degradation via K48-linked ubiquitination. The reduced TBK1 further impaired the formation of TRAF3-TANK-TBK1-IKKε complex that leads to inhibition of IFN-I production. Our study revealed a novel mechanism of SARS-CoV-2 M for negative regulation of IFN-I production, which would provide deeper insight into the innate immunosuppression and pathogenicity of SARS-CoV-2.


Subject(s)
Interferon Type I/biosynthesis , Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/immunology , Ubiquitin/metabolism , Viral Matrix Proteins/immunology , DEAD Box Protein 58/metabolism , HEK293 Cells , Humans , I-kappa B Kinase/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Proteolysis , Receptors, Immunologic/metabolism , Signal Transduction , TNF Receptor-Associated Factor 3/metabolism
9.
PLoS Pathog ; 17(1): e1009111, 2021 01.
Article in English | MEDLINE | ID: covidwho-1015956

ABSTRACT

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.


Subject(s)
Antiviral Agents/metabolism , Immunity, Innate/immunology , Interferon Type I/metabolism , Proteins/metabolism , Rhabdoviridae Infections/immunology , Secretory Pathway , Vesiculovirus/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , HeLa Cells , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteins/genetics , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/virology , Signal Transduction , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Vesiculovirus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL